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SUMMARY

Robust estimates for the parameters in the general linear model are

proposed which are based on weighted rank statistics. The method is based

on the minimization of a dispersion function defined by a weighted Cm i’s

mean difference. An asymptotic distribution of the estimate is derived.

Some examples are discussed which point out that the ranking can be based

on a restricted set of comparisons and still retain high efficiency.

Key words: Robust estimates, linear models, weighted rank statistics,
dispersion function, Cm i mean difference
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1. INTRODUCTION

Consider the linear model

(1.1)

where ‘! — •.. ,T,~) is an n x 1 random vector, I. is an n x 1

vector with each element equal to one, X — (x~~) is an n x p design

matrix, 
~ 

(S~~, ... , B
r
)’ is a p x l  vector of parameters and

e — (e1, ... , e ) ’ is an n x 1. vector of random errors. Assume that

e1, e2, ... , e~ are independent with a co on distribution having density

function f . The residuals are given by Z — (Z1, ... , Z1~) ’ where

Z — Z (5 )— Y — X B .

Methods of estimation of ~ are typically based on some principle

of in*lrlng the residuals small. The classical least—squares approach is

to minimize the sum of squares of the residuals . The resulting estimate

is optimal under normality assumptions. However , the least—squares

estimate is not robust in the face of departures from the model. It can

be inefficient when the error terms follow a non—normal distribution and —

it can be very sensitive to outliers and high leverage points in the

design matrix. These problems with least—squares estimates have spurred

the development of other types of estimates which are more robust.

There has been considerable work in recent years on the N—estimate

approach and on the method of minimizing the sum of the absolute values

of the residuals (Least Absolute Deviation estimates) . Methods based on

- - -~~~~~ _______________



- - 
— 

- - ~~~~~~~~~~~~~~ - ‘~~~~
— -  

~~~~~~~ 
- -: - -

—2—

rank statistics have also been proposed. With regard to the rank statistic

approach, basic material can be found in the papers of Jure~kov~ (1969),

(1971); Koul (1970), (1971); Adichie (1978) and Sen—Purl (1977).

Jaecke]. (1972) has discussed the value in using a dispersion function

and in defining the estimates to be the values of the parameters that

minimize the dispersion of the residuals. He showed how estimates based

on linear rank statistics can arise with a suitable choice of dispersion

function. This approach has been further extended by Hettmansperger and

McKean (1976), (1977), (1978b).

This paper will examine the estimate of B that arises with a dis-

persion function defined as a weighted Cm i’s mean difference. Cm i’s

mean difference is a familiar measure of dispersion and it has been pro— j
posed for the linear model problem by Wainer and Thissen (1976). The use

of weights adds greater flexibility. The asymptotic theory of the partial

derivatives of the dispersion function will be examined and an asymptotic

linearity result is given. This dispersion function is shown to be

asymptotically, locally quadratic. These results are used to establish

the asymptotic distribution of the proposed estimate of B . The paper

concludes with some c o e nts on the weights and some applications. Proofs

of the theorems can be found in the Appendix.

L - 
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2. THE DISPERSION FUNCTION

Consider the dispersion function

(2.1) D — D(8) — ~~ ~~~~~ — Z~I ,

where the bij > O
~ 

l < i < j < n  areagiven set of weights. Each pair

of residuals is compared by the absolute difference and the weight that is

attached can reflect the importance of the comparison. Note that the

weights can depend on the design matrix I • It is possible to have some

of the weights equal to zero and this will drop some pairwise comparisons

from consideration. The ~pecia1 case of equal weights, ~~ E 1, gives

rise to Cm i’s mean difference. Hettmansperger and McKean (1978a) have

shown that this dispersion function is equivalent to Jaeckel’s dispersion

function with Wilcoxon scores.

The dispersion function D can be expressed in another form. Let

(L~, ... ,R~) denote the ranks of the residuals; that is, R~ is the

rank of in the set {Z1, ... , Z~} , 1 < i < n • Let sgn(v) —

+1, 0, —i as v is ->0 , — 0 , cO • Extend the definition of the

weights ~~ to all subscripts i, j — 1 ,...,,n by using b~1 b~~

and b~1 — 0 . Then, using lvi — v sgn(v), some manipulation shows

n

(2.2) D ~
i—i

with B~~— ~ ~~~~~~~~~~~~~~~~~ i — i , .. . ,  n.

j+i 
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The coefficients B1 are random with B1 depending on the rank of Z1

and also on the subscripts of the residuals that are less than • In

the special case b1~ E l , Bi = 2 R 1 — (n + l).

Another dispersion function which is similar to D is

— I bjj lZ (j ) — Z
(j) I

i<i

in which the weights correspond to the ordered residuals Z(1) < ~~
.. <

It can be shown that

U U

— B~ Z~ — B~ Z(i)
i—l i—l

where — l

i_i 
bij I b1~ .

i—i j—i+l

In this form, it can be seen that D* is equivalent to Jaeckel’s diaper—

sion function with the B~ serving as the score function. If bij 1 ,

then D — D*. They are not equal in general. This shows that the weights

used in D serve a different purpose than the score function used by

Jaeckel.

I

~

_ _ _ _ _ _ _ _  _ _ _  _ _ _ _ _ _ _ _ _  
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3. PARTIAL DERIVATIVES OF D

To estimate the parameter S , consider using a point in the para—

meter space which minimizes the dispersion function D(B) of (2.1). This

function is nonnegative, piecewise linear and convex. Various numerical

methods, including linear programming algorithms, can be used to determine

an estimate. The solution is not unique in general. However, under some

conditions, it follows from the work in section 5 that the diameter of

the set of so]~utions tends to zero asymptotically.

The partial derivatives of D should be (approx~Lmate1y) equal to

zero at the minimum. Using form (2.2), these derivatives are

n

(3.1) aD/~ Sk — — B1 xik
i—l

for k — 1, ... , p, at points B where they exist. Another form of the

derivatives , that can be seen by writing D — ~ ~~ sgn(Z~ — Z~) (Z~ — Z~)

is

— — b1~ sgn(Z~ — Zj)(x
~k — Xik)

i<j - _ 
-

(3.2)

— —2 ~ bjj (xjk — Xik)$(Zi, Z~) + ~ 
- 

bjj (xjk — xik) 
‘

i<j i<j

where •(u,v)u” (sgn(v — u)+ l)/2 0, 1/2, 1 as u > v , u — v , u < v .

In this form , the derivatives can be seen to depend on the rank order of

the resid uals . They involve a general type of random variable of the form

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
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a~~ +(Z 1, Z~) which will be considered in more detail in the
i(j

next section .

The form of the derivatives in (3.2) can be changed to

aD/ask — I bij ix ik 
— Xjk i a~n(xj~ 

— x~~)8~n(Z~ —

for k — 1, ... , p • This is a “weighted” Kendall’s tau random variable

for Z vs x.~ . Thus when the partial derivatives are zero, the residuals

are uncorrelated with the independent variables in this nonparametric

sense. This is directly analogous to the least—squares approach where

the least—squares estimate of S can be defined by specifying that the

residuals be uncorrelated (Pearson product moment correlation) with the

independent variables.

~~~~~~~~~~~~~~~ 
--

~~~~~~~~~~~ —~~~~~~~~~~~~ —~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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4. A GENERAL CLASS OF RANDOM VARIABLES

In this section a general class of random variables , related to the

derivatives of the dispersion function, is defined . An asymptotic

normality result is given with the proof delayed until the Appendix.

For each k — 1 ,..., p, let a set of constants

1 .c i < j < n} be given. Let

U

a~~ (k) — ai~
(k) for i — 1, •.. ,n — 1

j—i+l

i—i
a~~(k) — ~ a~~ (k) for J — 2 , .•. , n

i—i

5n~ 
(k) — 0 , a 

• 1(k) — 0 .  a 
• 

(k) — I ajj (k)
i.cj

A1(k) — a 1(k) — a1 (k)

For asymptotic purposes , a sequence of these constants is needed , indexed

on n — 1, 2 , . . . ,  but this dependence on n will be suppressed in

the notation. In a similar fashion, the dependence on n of other quantities

will not be indicated in the notation.
- V

— —-
~~~~~~~~~~~~
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ASSU)~ TION (A1j: For each k — 1 ,... ,p

~ 
A~(k)

i—l
+~~~ as n4~~

max 4(k)
l<i<n

ASSU}~ TION (A2j: For each k — 1 , ... , p
I a~~(k)
i<j j

+ 0
n

I A~(k)
i—l

Define the random variables

— Tk(B) = I a1~ (k)~~(Zj  , Z~)

for k — l , . . . , p ,  where $(u ,v) 0 , 1/2 , 1 as u > v , u v ,

u < v • Let I — 1(5) — (T1, ... , T ) ’  be the p x 1 vector of these

random variables. Note that this type of random variable arises in the

derivatives of the dispersion function in (3.2) with the correspondence

a1~ (k) — bj~
(x

~k — xik) .  Specifica lly ,

(4.1) 3D/aSk — _2T
k (B) + a (k)

In order to consider the asymptotic distribution of 1(8) , the

following notation is introduced. 

- - -

~~~~—-~~~~~~~ -
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Specify a sequence of parameter values , contiguous to 0 by assuming

B — LI vc • where ts’ — 
~~~~~~~ 

... , A~) is a fixed vector.

Let the centered design matrix be Xc — (I~ — (l/n)J~ )X . where

is an n x n identity matrix and J is an n x n matrix of “ones” .

Let be the average of the kth column of X , •k 1, ... , p

Let be an n x p matrix with (i , k) th element equal to

A1(k) , i — i  , . . . , n , k — l , . . . , p ,  and let V~~
a A

~~A~~ . ~~~

— (~~~..(‘) , .. . , a (p) ) and let — (it~(l) 
‘

(f f 2) 
~~ 

B + (l/2)a •~ .

ASSUMPTION (Ag: For k — 1, ... 
~ 

p

lZjk~~~j + 0 as n+~~ •sax
1<i<n

ASSUMPTIOE (Au:

- (1/n)X~ ~~ 
+ as + , -

where Z is a p x p , positive definite matrix.

ASSUMPTION (Au: There exists a sequence of constants {i~ ) .  such that

y V + V as n+n . .n -

where is a p x p , positive definite matrix. 

- ~~~~~~~~~~~~~~~
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ThEOREM 4.]. Assume the error density f is absolutely continuous and

f ( f ’ / f ) 2f dx < • Let assumptions (A~) , (A2) , (A3) , (A4 ) and (A5)

hold . Then , if B —

Y
112(T(O) - ~~) ~

&_
~ N(O , (l/12)V)

as ~~~~~~~~~~~~

The notation “ “ - reads “converges in distribution”. A

translation property of the result can be noted since

—
~ — T(O)1 5 ~ 

T(5
1 

— S2 ) i  
~ 
. Here T(8

1)1 5 
refers to

the distribution of T(B1) when B — 
~2

L i1~~~~J.~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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5. ASYMPTOTIC LINEARITY -

In this section, a local , asymptotic linearity result is given for

T(B) . The proof can be found in the Appendix.

Let A — (A.~ , ... 
~ 

A~)’ denote a p x 1 vector and let c > 0

be given. Define a set ~ — {A: —c~~ A
k~~.

C
~~ 

k — i , . . . , p}.

Let a p x p matrix be defined with (k , £) th element

— — ( J f 2) }:
~<~ 

aj~
(k) (xjt 

— xit) . 
Let

(5.1) R(L) — n 3’
~
’2(T(A// ) — 1(0) — C~~ (A/Vc)]

Let G(y) — P (e1 
— e2 c y) denote the cdf of the difference of

independent random variables, each with density f

Let II •9 denote Euclidean distance.

ASSUMPTION (A6): The cdf G has a 4’ensity g — C’ and g(y) is

continuous at y — 0

ASSUMPTION (A~j :  For each k — 1, ... , p

I a~~ (k) 
- 

—

1<1 is bounded as n +~~~.

(~)

LEMMA 5.1 Let assumptions (A3) , (A4) , (A 6) and 
- 

(A7) hold. If

5 — 0 , then l(L )— O , uniformly in L e  £ . (Thet is, for all

c ‘ 0 and 6 > 0, there exists N such that P ( fl  1(h) II > c 6

for all n~~~N and all A c

_ _ _ _ _  

I

L ~~~~~~ ~~~~~~~~~~_
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The lemma shows that T(5) can be approximated by the linear function

1(0) + C~B asymptotically for S sufficiently near zero, however the

result is not strong enough for the application needed. A stronger result

is given in the following theorem.

THEOREM 5,1 Let assumptions (A3) , (A4) , (A6) and (A7) hold. If

B 0 , then SUp
L~~~~ llR~-)II ~ 0 as n + •

_ _ _ _ _ _

— —- -- ~~~~~~~~~~~~~~~~~~~~~~ —- — - —~~~— —~~~~~~~---- - — --— ~~~~~~~
—
~~
-
~
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6. DISTRIBUTION OF B

The estimate of 5 has been defined to be a poin t in the parameter

space, say B
~ 
, which minimizes the dispersion function D(B ) of

- - 
(2.1) . The set of solutions to this minimization problem is bounded as

seen by the following lemma. The proof of this lemma is exactly the same

as that of Theorem 2 of .Taeckel (1972) .

LEMMA 6.1 If the centered design matrix X~ is of full rank p ,

then 9: D(B) < D~ } is bounded for any number

In order to deal with the asymptotic distribution of B~ , it is

convenient to work with A — and define

D*(A) — (1/n)D(A/vc)

Then 
~n minimizes D*(A)

To mat ch the dispersion function D* to the T vector of section 4 ,

use the correspondence

(6.1) a~~ (k) — bjj (xjk — xik) —

Then fr om formula (4.1) , the vector of partial derivatives is

_______ 
3’2- 

— n ‘ [—2T(A// 5 + a ]  .

_ _  

I

~~~~~~~



.-r ~
-.—- .- .——-- -

~~~~~
_________

—14—

With (6.1) we can give more definite expressions for some matrices

that were defined earlier. The elements of the matrix of section 4

are linear functions of the elements Xj j  of the design matrix and with

some manipulation, write

A - B X ,_n _n~~

where B is an n x n symmetric matrix involving the weights of the

dispersion function . Specifically, define the (1 , J)
th element of

B to be —b 13 if i < j  and —b~1 if i > j . The ~~~ diagonal

element of Bn is b1 — 
~~~~~ 

b
1~ 

. Thus B has the negatives of

the dispersion function weights for its off—diagonal elements and positive

diagonal elements determined so that the row sums are zero. Also write

V =A’ A — X ’ B B X .
..n ~.n..n -

Again wj th (6.1) , the matrix C of section 5 will have (k ,

element Ckt~~
_ (~ f~~ 1~<~ bj~

(xJ k 
— xik)(x~~ 

— x11) . With some

further manipulation, it follows that

— (1f2) 
~!‘ ~n ~

The matrices V and C have been expressed directly in terms of

the design matrix X and the weight matrix • Since the row (and

column) sums of are zero , the centered design matrix could be used with 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~---
. -~~~~~~~~~~~~~~~~- -~~~ 

. 
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- 

!fl ~~~~~~C~~ f l ? U~~~C

~n 
- (Jf 2)~~ 

~n ~c

ASSUMPTION (A3) : With (6.1) holding,

(1/n2)C + C as ~~~~~~~~~

where C is a p x p matrix of full rank .

Now define a quadratic functio n of ~ to use as an approximation to

D*C6) by

Q(A) — —h’ C A + n 3
~
’2(a — 2T(0)] L + D(0)

Then

3Q(A) 3/2
— —2C A + n~ [a~ • — 2T(0)]

LEMMA 6.2 Let assumption (A8) hold along with the assumptions of

Theorem 5.1. Then

sUpA~~~ 
n_3/2 11 T(A/&) - T(0) - n312CA II —

~~ 0 as n +

LEMMA 6.3 Let the assumptions of Lemma 6.2 hold . Then

3D*(A) P
sup~~~ II ~~~ 

— ~~~ H 0 as n +

LEMMA 6.4 Let the assumption. of Lemma 6.2 hold . Then
P

•UPA~~~ 
IQ(A) — D* (A) I -‘ 0 as n ~
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Having established that Q(A) can be used to approximate D*(b)

it will next be shown that L values minimizing these functions must

be close enough to have the same asymptotic distribution .

On setting the partial derivatives equal to zero , Q(~) is

minimized at the point

- n
_ 3/2 C~~ ( (l/2)a - 1(0)3 .

THEOREM 6.1 Let assumption (A8) hold along with the assumptions of

Theorem 5.1. Let assumption (A5) hold with — n 3 
. Then and

L* are asymptotically equivalent. (See definition on page 1453 of Jaeckel

(1972).)

Now if Theorems 4.1 and 6.1 hold, when B — 0

n 312(T(O) — (1/2)a I -~~~~~~~ N(0 , (l/l2)V) as n

It follows that is asymptotically N(0 , (1/12)C~~ V C~~) and

the following result is immediate.

COROLLARY 6.1 Under the assumptions of Theorems 4.]. and 61 , when

“~ 
8n — is asymptotically N(0 , (l/l2)C~~ V C

1) .

Note that from the translation invariance of the estimate ,

~~~~ 1~ S ~~~~~ 

~nI O

L~ ~~~~~
-- -  

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _-



—17— -

If n C~ !n 
~~~~~~~ is used as an approximation to C~~ V C~~ , the

asymptotic covariance matrix of is approximately

cov(B ) — (1/12) C 1 
!n 

~~‘

(6.2)
— (l/ 12(ff 2) 2)(X ’ 

~n 
~~~~~~ !~ ~n ~~~~~~~~~~~ 

~n

Note that can be used in place of X in this formula. It should

be emphasized that cov(Bn) is not the exact covariance matrix. In

spite of this, formula (6.2) may prove useful in examing the effect

of different weight matrices on the estimate.

For the special case ~~ 1, the unveighted case,

— n~~~ — (l/n)J~) and

(6.3) cov(~~) — (l/l2(Jf2)2)(X~ X~Y
1

Note that cOV(8n) 
- depends on B~ through the matrix H - B~ X 

- - -

since [(X’ B ~)~~‘ ~n ~n ~~~~~~~~~ ~n 
X)]~~ — LX’ H(H’ E)~~ H’ X]

4 
. The

matrix E(E ’ H)~~ H’ is a projection matrix , the projection being into

the column space of H
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7. THE WEIGHT MATRIX B

In the unweighted case, bij 
E 1 and B~ — — (l/n)J~). This

is a benchmark case because of its simplicity. It also yields the highest

asymptotU efficiency as can be seen by expressing the difference of the

covariance matrices (6.2) and (6.3) as (excepting the constant multiple)

(~~ ~n ~~~~~~~ ~n ~n ~~~~~ ~n ~~~~ 
- 

~~~~ 
~~~~ 

- 
~~

where 14 — (X~ B 
~c~~

’ 
~~ ~n — ~~ ~c~~

’ x’ . The matrix M 14’ is

positive semidefinite and as a result the trace and determinant of (6.2)

cannot be less than that of (6.3) .

Formulas (6.2) and (6.3) are equal if and only if N — 0 or

~~ ~n ~~~~~ ~~ ~n — (~~ ~~~~ 
X, . Equivalently, Bn ~c —

~~~~ ~~~~ ~~ ~n ~~ 
• Since X~ (X, ~c~~

’ X~ is the projection map

into the column space of Xc ~ the equality will hold if and only if ,

the columns of Bn ~c are in the column space of 
~~ 
(~~ ~~ 

—

for some p x p matrix G )

The preceeding work indicates that the use of weights bij ~ 1

cannot increase the efficiency of the estimate over the unweighted case.

It may be possible to choose weights so as to lose little or no efficiency

and yet gain in some other respect . This matter needs further study.

By using weights bij — 0 or 1 we can reduce the number of terms

in the dispersion function D by reducing the number of comparisons .
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This may have computational advantages. Some examples in a later section

show that there need not be a loss in efficiency. With such a choice

of weights the dispersion function depends on “restricted” ranks of the

residuals . Specifically, using form (2.2),

D - 
‘i—l 

(2Ri 
— (#Ci +

where C~ — {j: ~~~ — 1 , 1 c j < n , j 
~4 
i ) , the number of elements

in C~ is denoted - by #C~ and R~ is the rank of in the set

{ Z ~: j c C~ }

The weights bij are associated directly with the observation.. (not

on the ordered observations) and can be chosen to depend on the design

matrix X • It may be possible to reduce the effect of high leverage

points in the design matrix with suitable choice of weights.

When X~ X, is nearly singular , the use of weights can reduce the

eff ects of multicolinearity.

One possible approach to setting the weights is to assign a weight

for each observation i — 1 , . . ., n and the use bij ~~~~~~~ 
i~~~j

Assume that 
~~~IIIl 

wi — 1 for simplicity. Define, an n x n diagonal

matrix W to have ~th diagonal element and a vector w —

• (V
l~~•~ •~~

Wn
)’ • Then the weight matrix is

~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~

.

~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 



r —
~~~ ~~~~~~~~~~~~~~~~~~~~ 

--
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Note that B~ X has (i , 1) th eleme:: wi(xij 
- ~ ), where

— 
~~~~. 

wi xii is a weighted average of the 1
th column of X .

X is then a “weighted” , “centered” design matrix. Overall , this

approach seems to be worth further consideration because it is a simpler

task to assign n individual weights than to deal with (~) pai rwise

weights.
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8. EXAMPLES

Example 1 Suppose there are n1 observations (Group 1) following the

model

Yi — 
~o+ BlXIo~~~” + S x~~, + e~~, i — 1, ...

and another n2 observations (Group 2) following the model

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ i — n 1 + 1 , . . . , n1 + n 2 n .

Note the different intercept parameters and different error variables with

possibly different distributions. Actually, the possibility of different

error distributions has not been covered in the work of this paper, but

the necessary modifications should be possible. Suppose the goal is to

estimate B
~~
, ... , • In some situations it may not be appropriate

to compare observations in different groups. The groups may refer to

different types of people, locations, times or some other blocking

variable. In such a case, the between group comparisons can be excluded

by using

1/n1 if 1 < i < j n1

j 1/n.2 ~~ nl + 1 <
i < j - < nl +n2

1. 0 otherwise. 

-~~--- --- - - .
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Then

D — (1/n].) ~~ IZ~ — Z
1 

+ (1/n2) 
~~ IZ j — I

i<j<n1 n1<i<j

and the weight matrix is 
-

I — (1/n )J 0
-

B —
-n 0 I — (1/n )J

- n
2 

2_ n
2

This is an idempotent matrix and the covariance formula (6.2) reduces to

(8.1) cov(B1,..., B~) 
- (l/12(ff

2)2)(X’ B~ X)~~ •

The usual approach to the analysis, when the error variables all have

the same dist ribution , is to define an indicator variable for groups

0 if 1 < i < n 1

x —i,p+l
1 if n1

< i < n 1 +n2

and add this term to the model . Then use bij E 1 , the unweighted

dispersion function. From formula (6.3), using an augmented design

matrix X* with the additonal column ,

cov (B1, .. . ,  B ,  B~~1) - (1/l2(ff
2)
2) (X~ ’ X~)~~ .

L ~~~~~~~~~~~~~~~~~~~ 
.
~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ _ _
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When the covariance matrix of B1, ... , B is determined in the usual

way, it is found to agree exactly with (8.1). Thus both methods yield

the same asymptotic covariance matrix for the estimates. The omission

of the between group comparisons does not affect the efficiency of the

estimates.

Example 2 (One Factor Analysis of Variance) Suppose there are p + 1

groups of observations with sample sizes n1 , n2 , ... , n~~1, ~~ ~~ n~
The usual model is

— 8o + ~l 
x~1 + + 5 x~ + Ci

where

[ 1 if i n .
1 
+1 ,...,

Xjj

0 otherwise,

for i — l ,..., n , j — l ,...,p . The design matrix is

/ 0 0  • . . 0

1 0  . . 0

0 1  • • 0

X — . . . . . .
• . . S
. • . . . S

~~~~~~~~~~~~~~~~~~~~~~~

L ~~~~~~~~~~~~~~~~~~ ~~~~~~~ _ _ _
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where 0 and 1 are column vectors of appropriate size. This is the

usual “shift” model with location parameters 
‘ 

+ +

for the p + 1 groups.

Suppose that for the dispersion function D we use weights

I if subscripts I and j are from different groups

bij 
=

0 if subscripts i and j are from the same group.

Then the weight matrix is

/ 

m
l
l 

~~~~~~~~~~~ 
. . -

~!/ ~~~~ 

m~I 
. —~

~~ = 1 . . . . .

—3 —J . . . m +11

where m~ — n~ is the number of observations outside of the ith

group and I and .3 are appropriately sized identity and unit matrices.

With this choice of weights, only the between group comparisons are used.

Formula (6.2) gives the covariance matrix of B using the above B~ matrix. 
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=As an alternative, all comparisons could be made with ~~ - 1

Then the weight matrix is a multiple of 3* — ‘n 
— (l/n)J~ . It can

be shown that the covariance matrix of B is the same using 3~ as it

is using 3n • This shows there is no loss of efficiency in dropping

the within group comparisons. In fact, the estimates B are identical

for these two cases since the terms involving within group comparisons do

not involve any parameters and cannot affect the minimization process.

Another interesting point will be illustrated with a special case.

Suppose p — 3 and there are equal sample sizes . m , k — 1, 2 , 3 , 4.

Suppose that. comparisons are only made between adjacent groups in the

dispersion function; that is groups 1 vs 2 , 2 vs 3 and 3 vs 4

The corresponding weight matrix is 
-

f m ~ -J o o

( 
—J 2inI —J 0

I 0 —J 2m1 —.3

2

By direct computation,

- 2 1 1

(V B XY’(X’ B B X) (X’ B X) 1 
— ( l/ m) 1 2 1

1 1 2

If all comparisons are made , B* — I — (l/ 4m) J and



- ‘ ~~~~~~ 
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2 1 1

(X’ B* X)~~(X’ B* B* X) (X’ B* X)~~ (l/m) 1 2 1

1 1 2

Thus the approach with adjacent group comparisons yields the same coy—

ariance matrix as the usual approach with all comparisons. This

suggests that there is considerable redundancy in making all comparisons. -

The possibility of restricting the number of comparisons, without

a loss of efficiency, may be especially useful in more complicated fixed
- 

effect designs. Such designs can be viewed in terms of a one—way layout

with the parameters of interest being contrasts in the location parameters

of the groups.

—U —— - --— 

~~~~~~~~~~~~~ - —- -~~~~~~~~~~~~~~ ---- ~~~~~~- --- --- - — ----—
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9. APPENDIX

Proof of Theorem 4.1

Let w~ — B~ x~1 + • • + 8 ~~~ , i — 1 , ... , n , and ~~ — 
~~~ 

wi/n

Let 8 
~~~~~~~~ 

B
r
)’ be a fixed p x l  vector and without loss ~f

generality in what is to follow take 6’ 8 — 1 • Consider a linear

combination U — U(B) — 0’ T(B) — ~~~~ 
hi~

$(Z j~ 
Z~) , where

— 

~l 
Sjj (l) + ... + e~ a~~(i) ~ 1 ~ i c < n • Let

h~. 
~~~~~~~~~ 

h
11 

h~~ — 
~~~ 

h~~ h~. — O~ h 1 — O~ h•• 
— 

~~~~~~ 
h~~

— h.i — h1 — e~ A s (l) + ~~~~~ + 8 A~(p)

The theorem will follow if it is shown. that U(0) is asymptotically

normal with mean 
~~~ 

H~(v~ — ) (J f
2
) + (h /2) and variance

~~~ 
E~/U for any choice of 8. To show this, Theorem 4 of Sievers

(1978) can be directly applied once the four assumptions there are

verified .

The first assumption require s max (Vj  — ;)2 + 0 • This follows
l~i~n 

-

from Assumption ~A3) .

Th. second assumption requires ~~~~~ — 
.
)2 + > o • mis

follows from Assumption (A4) using 11(vj — ;)2 
— x

The thir d assumption requires 
~ 

H~ / max 11~ +

i 

— — — ~~~~~~ ~~~
-a . S
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To examine this, write

~~~~ 
~~ ~i~~l 

A~(l) + • • .  + 0 A~(p) ] 2 
~~ 

4w + •• .  + 
~i 4~p)

— 

~~. 
4(1) +-. . .  + 

~~ 
4(p) max [0

1 Ai
(l) + • . .  + 0~ A~ (p) ]2

F1 F2 say .

Now
e’ V 0
-F —
tr(V )

8’ V 0n..
— miii ( I

8 ~ 6’O — l  tr(V~)

A in
— A + . . .+ A  ,

ln pn

where A < A < ••• < A are the ordered eigenvalues of V • Letin— Zn— — pit

A1 A2 < 
... < A~ denote the ordered eigenvalues of V . Then by

Assumption (A5)

~‘1n 
‘~‘n Ain A1

A + •~~~~ + A = y A + ... + y A + 
~~ + ... + A > 0

lii pn n h  n p n  1 p

as n 9 ~ and this shows F1 is bounded from below away from zero .

Now with the Cauchy—Schwarz inequality used in the denominator

— ‘— ‘-- r- -

—--- ----~~-— ---~~~--
. - .-- ~—---~~--~~ -.-—-~----~~~~~

—- -— -—-~~- -— ---—-----~~~~-. -~~--- -------
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F 
4(i) + + 

~~ 
4(p)

2 — 

e~ 0 max (4(1) + •.. +

~i 
4ii .)  + + Ii 4 c -

— 

p max{4(1) , ... ,4(p)}

JI~ 4t1) I~ 4~p~
max A~(l) max A~(p)

L 1

Then , with Assumption (A1) , it follows that -~ as n ~

The asymptotic behavior of F1 and F2 then guarantee that the third

assumption is met.

The fourth assumption requires that 
~~~ 

h~~ I ~~ 
H~ 4 0

Now

~~~ 
h~1 — 

)i<j~~l 
&ij(l) + ~~~~~ + 0~ a~1

(p) ]2 
1.~ 

4(1) + “ + 
~~ 
4(p)

~~~~ 

H~ ~ 
4(1) + • •.  + 

~ 
4(p) Zj(e 1Ai(l) +•~~~•+ e~ A~(p) ] 2

say . -
~~~

Now using the Cauchy-Schwarz inequality in the numerator

!‘ ! r}~ <~ 
a~1 

(1) + • + 1
~<~ ~~ (p)

}
~~

4(l ) + . . . + I~4(~
)

~~~ 
a~~(l) 

~~~~ a~~(p)

!~~4(’) 
+ + 

I~~4(~
) 

-
~~~~~~~~~~~~~~~~~~~~~~~~

- - -  

_ _ _ _ _ _ _ _ _ _



—30—

Then with Assumption (A2) , it fohlows that G1 -~ 0 as n 4 ~~

Now G2 — h/F1 and F1 was ahown to be bounded away from zero.

Thus G2 is bounded and with the behavior of G1 the fourth assumption

is met.

Proof of Lemma 5.1

It is sufficient to show that the result hohds for each coordinate of

R(A) . The first coordinate , say R1(~ ) will be considered. Let

tij (
~

) — A1(x11 
— xii) / V’

~ + ... + ~~~(x1 
— x1 )/& . Then R1(A) can

be written -

— n
_3

~’2 E~ j <j aij (l) Wi1 + (1 f2)~~<1 aij (l)t ij
(
~

) ] •

where

Wi1 — $(Zi , Z1
) — $(Y1, Y1

)

[+1 if t
11

(~ ) < — ‘
~i 

< 0 -

— —l if 0 < — < t~1
(A)

1 0 otherwIse

Actually W~1 
can be ± 1/2 when ties occur but- this will be ignored

since such events have zero probability.

In both cases t~1 
(A) > 0 and t

11
(A) < 0 , E(W

11
)

0(0) — G(t (a)) — —t (
~) g(~ (a)) , where ~ ( A ) I ~~ k

~~ 
( A ) II-  I-  I-  ii- I -

Then using g(0) — f f 2

_ _ _ _ _ _ _ _ _ _  - _ _ _ _ _ _ _ _  --_~~~~~~~
_
~~

__
.
~~~

_
~~
j_
~

__ 
- -
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E(R1(A)) — ~~3i’2 

~~~ 
a~~(1) t~1

(A) ( g(0) — ~(~~1
(A) ) ]  •

From Assumptions (A3) and (A
6) ,  it follows that for any c > 0

max ~g(O) — g(~1 (~
) ) I  c c uniformly in A e ~~ for ii sufficiently

1<1 1-  -

large. Further , noting that ~i<l (xIk
_ x jk)(xIL — z jL)/ (

~
) —

write 
~~~ 

t~1
(A)/ (~) — ~~~

‘ 

~~~~~ ~~~~~

Then, with use of the Cauchy—Schwarz inequality,

IE(R1(
~))I ~ n~~i~~ 

{ 
~~~~~~~~~ 

a~j (1) / ( ~)~~12 
~~~~ 

~~i ~c 
A/n?12 .

With Assumptions (A4)  and (A7) and the fact that e is arbitrary,

it must be that E(R1(A)) + 0 as n + ~~, uniformly in A c

The variance of R1(A) is

Var(R1(A) )  — n 3 
~~~~ 

a~~ (l) Var (W~3
)

+ n 3 
~ ~ 

(1) a~~ (l) cov(W11 , W.~~) .
icj k<& - —

(i ,fl+(k,L)

Using Assumptions (A3)  and (A7) , it can be shown that Va r (R1(A) ) -‘ 0 -

as n+. , uniformly in A a L  • With the mean and variance tending

to zero, the le a  follows.

L— — — - --- - - - - -
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Proof of Theorem 5.1

It is sufficient to show that the result holds for each coordinate of

Suppose R~ (A) is considered . R1(A) and tij(A) are given in the - , 
-

preceeding proof.

Let c > o , c’ > 0 be given.

From Assumptions (A4) and (A7) there exists a bound B0 such that

(l/ 2~ t!~<~ a~j ( 1) I ( ~ ) I uh/ 2  
~~~~ 

~~~~~~~~~~~ 

~~~ 
— ;k
)/nI ) <

Now choose 6 so that 3 g(0)B0 
6 < c/3 . Then partition ~ into

closed subsets 
~ ~~~~

‘ ~~ say , so that A , A ’ c 
~ m implies

I A ~~ 
— A k I < 6 for all k — 1 , ... , p and m — 1 , ... , N and that

— U~ ~ . Let t~ (m) — max t (A) and tL (in) — mm t (A)
in—l m ij if - if ij -

m - m

F Then from Assumptions (A4) and (A7) , 
it can be shown that

—3/2 
~~~ 

a~1
(l)It~1

(m) - t~1(m) I < B 6

For 1 < i < j < n and m — 1 , ... , N , define random variables

1 if t~1
(m) ~~~ 

— ~~~ t~1
(m)

S~1
(m) — s ~

0 otherwise

and 
~ is 

n 3
~
2 
~icj 

aij(l) Sij(m) 

--— -~~-~~-~~~~~~~~~
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Under Assumptions (A3) , (A4) , (A6) , (A7) and B — 
2 ~~ can be

shown that

E(Q~) — n’
~~
’2 

~~~~~~~~~ 

a~1
(l) [G (t~1

(a)) — G(t~1
(m))]

~ 2g(O)B0 6

for all in — i , ... , N and for ii sufficiently large .

Further, it can be shown that

Var(Q~) + 0 as n -~ , 
-

for afl i n — i ,..., N.

Now for each m — l , . . . ,  N , choose a point

Then note that

- - 

. ~—3I2 T1(A/vc) — T1(A /1~) I ~~~
. %~

for each i n — i ,..., N. Purther,by Lemma 5.l,

P ( 1R
1

( A ) I  ~. 3 )c c ’/214

for each in — 1 , . .. ,  N and for n sufficiently large.

Putting some pieces together, for each in — 1 , ... , N and for

• - n sufficiently large

k - - 
- 

-
~~~~~~~~~~ 

- -------- -~~~ 
-

- - - -- - - - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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sup 1R1(A) — R.,~
(A
~)I < sup n 3’2

IT1(A/~’~
) —- - 

~~~~~ 
- -

+ sup n 3
~
’2g(0) ~ a1 (1)Iti4

(A) — t j 4
(A

~~ ) I

1<1

< Q~~+ g(0)B0 6

— E(Q~) + E(Qm) + g(0)B06

c/3

Further, for each in — i , .. .  , N and for ii sufficiently large

P(sup R1(A )I
-

< P(sup 1(
1(A) — R1(A~)I 

+ Ri(A~
) < ~

)

- in

< P(Q~ — E(Q~) + c/3 + R1( A )  >

< P(Q~ — E(Q~) > c/3) + P(IR
].
(A

m
) l  > c/3)

(9/ 2) Var(Qm) + s’/2N

< c ’/2M + e’/2M

- — s ’/N .

Finally , for ii sufficently large 

—------—-—-—~~~~_—-—-——-_ - —-_______  - ---—.

—I 
~~~

—-- 
~~~~

---
~~~~~
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P(sup 1R1(A)I > €) < P(sup IR1(A) I > c)
- 

Ac~ 
- AC& m 

- 
—

— C ’

and the proof is completed.

Proof of Lemma 6.2

When (1/n2)C~ in the expression RCA) is replaced bji C , the proof

of this lemma is routine. -

Proof of Lemma 6.3

Note that

aQ (A) aD*(A) 3 2 3’2
— - — 2n / (T(A//~) — T(0) — n ‘ C A]

- — —  — —

and use Lemma 6.1.

Proof of Lemaa 6.4

With Lemaa 6.3, the proof finishes exactly as in Jaec kei (1972), page 1454.

Proof of Theorem 6.1 -

Again use exactly the argument of Jaeckel (1972), page 1454 , along with

Le a  6.4.

_ _  

_ _  

_ _ _ _  

j 
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